医薬品製造環境の微粒子・微生物モニタリング

SEIICHI KOSHIYA Engineering Division, ease Limited 株式会社 イーズ エンジニアリング本部 越谷清一

1. はじめに

医薬品業界は今まさにグローバル時代の真っ只中にいるといえる。ICH(International Conference on Harmonaization of Technical Requirements for Registration of Pharmaceuticals for Human Use;日米欧医薬品規制調和国際会議)の取組みが代表的な動きであり、この三極の合意を受けて、わが国でも 2001 年 11 月厚生労働省医薬安全局から『原薬 GMP ガイドライン』が通知された。そしてわが国の薬事法も大きく改正され新しい時代に入ろうとしている。「製造を支援するシステム」の一つとしてわが国の「バリデーション基準」(平成 7 年 薬発 158 号、平成 12 年一部改正)にうたわれた空調処理システムをはじめ構造設備に関わる GMP ハードに対しても「原薬 GMP ガイドライン」以降、プロセスバリデーションの前提条件の「適格性評価(Qualification)」と「契約などに基づく品質保証」との位置付けが明確に示され、世界的な品質規制のハーモナイゼーションが計られはじめた。

世界的に統一されていなかったクリーンルームの清浄度の規格も ISO 14644-1 として世界標準化され、ともすれば混乱のもとであった無菌製剤製造の環境基準もハーモナイズされはじめた。本稿では、ISO をはじめ、EU - GMP, USP26, JP14 など、つぎつぎに見直され、改正されているこれらの基準やガイドラインを紹介し、微粒子/微生物のモニタリング方法と評価の概要と今後の課題などについて述べる。

2. クリーンルームの清浄度規格と無菌製剤製造環境評価

クリーンルームの清浄度規格としては、FDA のガイドラインなどでも古くから親しんできた米国の Fed Std - 209D,E が ft3 の単位から SI 単位として改正され、1999 年 ISO14644 - 1 が制定された後、廃止された。(未だにクラス 100,クラス 100,000 という呼称は概念的に判り易く、一般呼称という注記をつけ、使用している場合もある。)

ISO 14644 - 1 はあくまでもクリーンルームの清浄度を定義する規格であって、医薬品の製造環境に限らない。半導体など工業用クリーンルームに対しても同様で、対象となる微粒子径は $0.1\,\mu$ m から規定されており、クラス 1 は $0.1\,\mu$ m 以上粒子の上限濃度が 10 個/m³ と定義されている。医薬品製造環境としては $0.5\,\mu$ m 以上を対象としているので、一般呼称クラス 100 に該当するのは ISO クラス 5 で上限濃度は 3.520 個/m³ にあたる。

無菌の医薬品、医療用具など無菌操作技術に対しては ISO 13408 - 1 の「ヘルスケア製品の無菌製造法」という規格があるが、微生物に対する環境基準の記載はなく現状の基準である、EU - GMP, USP24, JP14 などを適用することになる。

一般的に、 5μ m 程度の大きさの浮遊微粒子と浮遊細菌とには比較的有意な比例関係が認められているが、 0.5μ m 程度の浮遊微粒子と浮遊細菌および真菌とには有意な関係は知られていない。微生物に関しては、清掃、殺菌、ガウニングなどソフト上の影響も大きく、空調処理システムの設計に影響するのは微粒子径と上限濃度である。微生物は単独では存在せず、浮遊微粒子に付着して存在しているとして、浮遊微粒子を減少させることによって結果として浮遊微生物が減少するという想定に基づいている。

表 - 1 に ISO 14644 - 1 および無菌製造を要する医薬品の製造環境規定として、ISO 13408 - 1、FDA の無菌製剤 製造ガイドライン、EU - GMP Annex I の微粒子、微生物の基準。表 - 2 に薬局方として USP24〈1116〉および JP14 の環境微粒子、微生物の基準を示す。

- 表-1 環境微粒子・微生物の評価基準(1)
- 表-2 環境微粒子・微生物の評価基準(2)

3. 環境微粒子のモニタリング

通常、医薬品製造環境の微粒子測定で使用するのは光散乱式粒子計数器(パーティクルカ ウンター)である。原理は微粒子が光線中を通過する際、散乱する光の強さが微粒子径とあ る一定の関係があることを利用している。照射光としてレーザー光を用いるものと、ハロゲ ンランプのような白色光を用いるものがある。レーザー光を用いる装置は検出可能な最小径 が 0.1μ m、白色光の場合は 0.3μ m である。医薬品製造環境の対象微粒子は 0.5μ m であり、 空気の吸引量も大きいため自光色パーティクルカウンターが多く使われる。

パーティクルカウンターは空気吸引ポンプ、照射光、光電子増倍管、増幅器、レンズ、応答 パルス波高値で微粒子径を選別する波高分析器などで構成される。

現在一般的に使用されているものは 空気吸引量が 28.3 l/min のものと、 空気吸引量が 2.83 l/min のハンディ タイプのものがある。外観を図 - 1 に 示す。

ここで、表 - 1 に示した EU - GMP Annex Iの注記8では、グレードA,B できれば C もサンプリング空気量は 1m³ とすべきとある。最近では 200 l/min 吸引できる機器もあるが現状の汎用機器

では30分以上吸引する必要があることから、 ISO 規格との違い、科学的根拠など今後議論

(ハンディタイプ)

図-1 パーティクルカウンター外観

を呼ぶ問題と思われる。(ISO ではグレードBに相当するクラス7において最小サンプリン グ量は $20/2,930 \times 1,000 = 7$ (リッター)で、余りにも値が離れすぎている。)表 - 3 に ISO 14644 - 1 の浮遊微粒子によるクリーンルームの清浄度評価法を示す。 (ISO および JIS においても逐次検定法があるが対象がクラス4以上のためここでは略す。)

表-3 ISO 14644-1 **の**浮遊微粒子清浄度評価法(抜粋)

[参考] 清浄度を GMP のバリデーション (あるいは適格性評価) の対象として評価する場合 と、「契約などのに基づく保証」として通常行われている試運転調整などの範囲で評価する 場合について一つの例を示す。(分かりやすくするため、簡略化している)

・クリーンルーム I 床面積:16m2 ・清浄度測定点 4 ヶ所(1 ヶ所3回測定)

・要求清浄度: ISO クラス 5 0.5 μ m のみ対象) の場合。

・測定結果;右、参考表に示す。

ISO の評価法では、 平均粒子濃度の平均値 $\overline{X} = (1000 + 3400 + 1500 + 3000)$ /4 = 2,225

標準偏差: s=(((1.000-2225)2+ $(3,400 - 2,225)^2 + (1,500 2,225)^2 + (3,000 - 2,225)^2)/3) \hat{0}.5$

測定点	1	2	3	4
各測定点の 平均粒子濃度 0.5 μ m 以上 (個/m3)	1,000	3.400	1,500	3,000

参考表 各測定点の平均粒子濃度(例題用) =1.156

標準誤差; s/\sqrt{N} =1,156/2=578

95%UCL による微粒子濃度= $2,225+2.4\times578=3,612$ (個 $/m^3$) となる。

ISO クラス 5 は 0.5μ m 以上の粒子上限濃度は 3,520 個/ m³ であるから、この例における クリーンルーム I は ISO クラス 5 とは評価できない。

一方、同室が非無菌製剤製造室であり微粒子清浄度は医薬品の製品品質に対し、直接影響を及ぼすことはなく、バリデーション (あるいは適格性評価)の対象とはならない場合、ユーザーとクリーンルーム提供ハードメーカーが微粒子評価は測定点の平均値で評価すると決めた場合、同例では 2,225 個/m3 であるから、クラス 5 を満足している。と言ってもよいことになる。

統計学など科学的根拠に基づくか否かでこれだけの違いがある。

4. 環境微生物のモニタリング

環境浮遊微生物のサンプリング手法には、落下菌測定法、衝突法、インピンジャー法、メンブレンフィルター法がある。

表-4 にそれぞれの手法の概要を一覧表で示す。

表-4 環境浮遊微生物のサンプリング手法一覧表

また、施設の壁面、床、設備、機器、用具、作業衣などの表面に付着している微生物を測定する方法で、一般的もちいられているのは、コンタクトプレート法および拭取り法である。 それぞれの特徴を表-5に示す。

表-5 表面付着微生物のサンプリング手法

いずれのサンプリング法も、サンプリング時に微生物を汚染させたり、殺菌消毒剤などの混入が起きると、母集団の特性値を過大または過小評価することになるので注意が必要である。浮遊細菌の総細菌数測定として、わが国は37 \mathbb{C} ・48時間が標準的であったが、欧米の基準なども考慮して最近では32 \mathbb{C} ・48時間培養が適用されている。 真菌には25 \mathbb{C} ・5日間培養が適用されている。

5. 浮遊細菌の迅速測定法

現在、広く行われているコロニー計測法はコロニー形成のための培養に2日間を要し迅速性に欠けるため、いろいろな浮遊細菌の迅速測定法が研究されている。なかでもATP - バイオルミネッセンス法(ATP 法)はキット化され、その簡便性やコロニー計測法との相関性から、実用の域に達しており今後の迅速測定法として期待されている。

ATP 法は、ATP (adenosine triphosphate.アデノシン 3 リン酸)に酵素ルシフェラーゼを加えると発光する原理を応用した方法である。ATP は生物の共通エネルギー物質であり、細菌 1 菌体当りの ATP 量はほぼ同じである。また発光量は ATP 量に比例することから、発光量から細菌数を推定できる。

6. おわりに

紙面の関係もあり十分には触れられないが、本稿で紹介したのはあくまでもクリーンルームの評価の国際標準と無菌製剤が対象のガイドライン、基準などが中心である。非無菌の内服固形製剤などは浮遊微粒子、微生物の規制値はない。過去においても経験していることだ

が、具体的な数値が示された基準や規格があると、安易にその数値に準拠して過剰な設備を生んだり、不要な書類を生んだりケースがあるので気を付けたい。GMP や ISO の精神を十分理解することによってより合理的でハーモナイズされた品質システムを構築していく必要がある。

以上

◆参考文献

• ISO 14644 - 1 (1999) : Cleanrooms and associated controlled environments—

Part 1: Classification of air cleanliness

• ISO 13408 - 2 (1998) : Aseptic processing of health care products—

Part 1: General requirements

- European Commission EU guide to good Manufacturing Practice revision to Annex 1 2003
- USP24 (1116) Microbiological Evaluation
- ・日局 14 無菌医薬品製造区域の微生物評価試験法
- ・クリーンルーム環境の施工と維持管理: 社団法人 日本空気清浄協会 編 オーム社 (2000)
- ・ISO 規格に準拠した無菌医薬品の製造管理と品質保証:日本規格協会 佐々木 次雄/川村 邦夫/水田 泰一 監修(2000)

表-1 環境微粒子・微生物の評価基準(1)

種別	│ 清浄度規格(クラス) 無菌操作ガイ			無菌操作ガイドラ	菌操作ガイドライン											
「生か」	: クリー	-ンルームの	青浄度を定	≧義する規	格	:無菌製造を要する	る医薬品の製	製造環境規定	定							
	ISO 1	4644-1		USA		ISO 13408-1	FDA	(1987) ^{※3}	EU GM	Р	Annex	I (2003)				
名 称			(1999)	Fed Sto	∃-209E	無菌的製造法	無菌製剤製	造がイドライン	7							
				(01.11	.29廃止)	(1998)	作業	美 時	非作	業時			作	業 時		
対 象		浮遊微粒子	※ 1	浮遊微	数 粒子	浮遊微粒子	微粒子	浮遊菌	浮遊微	粒子 ^{※8}	浮遊微	(粒子 ^{※8}	浮遊菌	落下菌	付着	菌
計測	_	個/r	n ³	個/ft ³	SI単位	個/m³	個/ft ³	CFU/	個/	m ³	個	/m³	CFU ^{※7} /	ϕ 90mm	CFU/φ	CFU/
単位	クラス	$≧$ 0.5 μ m	$≧$ 5 μ m	≧0.5 <i>μ</i> m	≧0.5 <i>μ</i> m	\geqq 0.5 μ m	≧0.5 μ m	10ft ³	≧0.5 <i>μ</i> m	$≥$ 5 μ m	$≥$ 0.5 μ m	≧5 <i>μ</i> m	m ³	CFU/4hr	55mm プレート	5本指
クラス、	1															
グレード	2	4														
	3	35		1	M1.5											
	4	352		10	M2.5				グレート゛		グレート゛					
	5	3,520	29	100	M3.5	重要操作区域 ^{※2}	100 ^{※4}	< 1	A ^{※6} ,B	<1	A ^{※6}	<1	<1	<1	<1	<1
	6	35,200	293	1,000	M4.5											
	7	352,000	2,930	10,000	M5.5	その他操作区域			С	2,000	В	2,000	10	5	5	5
	8	3,520,000	29,300	100,000	M6.5	(非無菌支援区域)	100,000 ^{**5}	25	D	20,000	С	20,000	100	50	25	_
	9	35,200,000	293,000										200	100	50	_
備考	0.3, 1.0 限値あ JIS B99	D規格には他に μmの各粒子4 り。 920も2002年改 644-1と同じ内	圣以上の上 (正され、			いが、各区域の微 粒子清浄度は作業 時のEU-GMPの A,B,Cに該当する。	※3: FDA,CDER(2 では微粒子,f EU-GMPとほ 示されている 区域 5:管理区域	微生物とも ほ同じ値が	閉鎖系の7 7ローが使用 ※7:CFUに	イソレータや・ 引される。 はcolony fo	グローブボック orminngu un	クスではーフ it の意味で	方向流(uni :(微生物 <i>0</i>	ダンス値)(解 directional a O集落数)を ぱは1m ³ 以上	ir flow)や低 あらわす。	速のエア

表-2 環境微粒子・微生物の評価基準(2)

種別	清浄度	規格	局法 :	医薬品類	製造法								
名称	ISO 1	4644-1	USP2	4<1116>		(2002)		JP14					
つか		(1999)			作 業 時			非作業時		作	業 時		
対象	浮	遊微粒子	微粒子	浮遊菌	付着菌※2	(手袋)※4	(着衣)	微粒子	微粒子	浮遊菌	付着菌※6	(手袋)※7	
計測	_	個/m3	SI単位	CFU/		CFU/		個/m³	個/m³	CFU/	CF		モニタリングの 参考頻度
	クラス ^{※1}	$≧$ 0.5 μ m	\ge 0.5 μ m	m3	2	4∼30cm2		$≧$ 0.5 μ m	≧0.5 <i>μ</i> m	m3	24~	30cm2	多有頻度
クラス、	5	3,520	M3.5	<3	3 ^{**3}	3	5	A ^{※5} ,B	A ^{※5}	<1	<1	<1	作業シフト毎
グレート゛	6	35,200											
	7	352,000	M5.5	<20	5 (10:床)	10	20	С	В	10	5	5	作業シフト毎
	8	3,520,000	M6.5	<100				D	С	100	25	_	製品・容器と接触 する区域:週2回
	9	35,200,000							(D)	200	50	_	接触しない区域: 週 1回
備考		Dクラスは1~4を 各している。		※2:付着菌は内装、機器、設備表面でコンタクトプレート (24~30cm2)に現れる生菌数。			※5:Aは層	※5:Aは層流規定 ※6:付着菌は拭き取り法による			გ		
NH 'C			の換算値	き取り法の場合は(面積24~30cm2)当りの表面積 換算値				※7∶手≨	遂は5指をフ	プレートに押捞	7.7		
			※3:床も1	含む ※4:	手袋は5指を	プレートに押	捺						

表-3 ISO14644-1の浮遊微粒子清浄度評価法(抜粋)

最小測定点数	$N=\sqrt{A}$ $N:$ 最小測定点数 $A:$ クリーンルームの面積					
最小サンプリン グ空気量	V=20/Cn,m×1,000 V:1回の最小サンプリング空気量(リッター) Cn,m:該当クラスの大きい粒径における上限個数(m ³ あたり)					
各測定点の 平均粒子濃度 の平均値	$\overline{X} = \frac{\overline{C}_1 + \overline{C}_2 + \cdots + \overline{C}_i + \cdots + \overline{C}_n}{n}$ \overline{C} : 各測定点の平均粒子濃度					
全測定点の 平均粒子濃度 の標準偏差 s	$s = \sqrt{\frac{\left[\left(\overline{C_1} - \overline{X}\right)^2 + \dots + \left(\overline{C_i} - \overline{X}\right)^2 + \dots + \left(\overline{C_n} - \overline{X}\right)^2\right]}{n - 1}}$					
95%UCLによ る 微粒子濃度	$\overline{X}_u = \overline{X} +$	$t \times \frac{s}{\sqrt{n}}$	<i>t :</i> 95%UCI	_のスチュー	-デント数	
95%UCL t の値	測定点数 2 t の値 6.8	3 2.9	2.4	5~6 2.1	7 ~ 9	
95%UCL濃度が式(1)を満足し、かつ各測定点における平均粒子濃度が式(2)を満足する場合そのクリーンルームは、その清浄度クラスであると評価する。 $\overline{Xu} \le 20$ が成に $\overline{Xu} \le 20$ が成に $\overline{Xu} \le 20$ が、 $\overline{Xu} \le 20$ が						

表-4 環境浮遊微生物のサンプリング手法一覧表

24 块坑	The state of the s							
		環境浮遊微生物のサンプリング法 衝突法						
			インピンジャー	メンブレン				
	落下菌測定法	スリット アンダーセン サンプラー法 サンプラー法		ピンホール サンプラー法	遠心型 サンプラー法	法	フィルター法	
概要	・空中浮遊微生物を一定の面積(直径9cmの 標準シャーレ))の寒天 平板培地上に自然落 下させて捕集	のスリットを通して一 定流量の空気を吹 き付けて捕集			・回転羽根を回転 し、一定流量、中央 部から吸引した空気 を円形の周囲部に 固定した寒天培地 のストリップに吹き 付けて捕集	液の生菌数を測 定。	フィルターでろ過	
サンプリン グ 空 気量・時間	·清浄度(高)30分以 上。 ·清浄度(低)5 or 10分 程度	・空気量28.3 l/min ・回転速度切り替え 最長1時間/1平板 培地	•空気量28.3 I/min	・空気量26.5 l/min ・平板場うち回転台 1回転/2min	・空気量; 40 l/min (最大 320 l) ・時間;30秒から8分 まで5段階で設定	├空気量;10~15	・吸引力、フィル ターサイズ、吸 引時間を適宜設 定	
培 地	標準寒天培地。	同左	同左	同左	専用培地	液体培地	専用アンプル入り 液体培地	
特徵	・簡便 ・精度はよくない	・浮遊微生物の捕集 を時系列的に推移 を把握可能	·空気中の浮遊微 生物の粒子分布の 測定に適する	・浮遊微生物の捕集 を時系列的に推移 を把握可能	・小型軽量、持ち運 び容易 ・バッテリー使用	・圧縮空気など の試験に適す る。	• 簡便	
備考	・気流の速いところは、 長時間暴露で培地の 乾燥による性能低下 に注意	・スリットと平板培地 表面の間隔 2mmの とき捕集効率最大	・吸引部が多孔板 一つのタイプもあ る。 ・コロニーの重なり を避けるため微細 孔のふるい方式も あり。	・ピンホール直径5mm×5個・直径9cm標準シャーレ使用	・吸引量が501/min 又は100 1/minで最 大サンプリング空気 量が1,000 I 及び 1,999 Iの機器が市 販されている。		・フィルターには ゼラチンフィル ターなどウエット タイプもあり。	

表-5 表面付着微生物のサンプリング手法

	表面付着微生物のサンプリング法				
名 称	コンタクト プレート法 (スタンプ法)	拭取り法 (スワブ法)			
概 要	・測定場所にコンタクトプレート全体を均等に接触、適切な培地で培養し生菌数を測定。	・無菌のガーゼ、脱 脂綿、綿棒などを生 理食塩水、各種緩衝 液に浸し、サンプリ ング面を拭取り採 取。			
方法	・コンタクトプレート (表面積20cm ² 以 上)を対象表面に 25g/cm ² 程度の圧 カで10秒間接触	・対象表面をゆっくり 回転又は平行線状 に拭取る			
特徴	・簡便 ・清浄度の高い環 境対象	・正確で精度の高い 測定結果が得られ る。 ・操作が煩雑。			
備考	・一般に凹凸のない 平らな表面に適して いるが、最近柔軟に 対応できるタイプも あり。	・多様な表面に適用 可。			